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Unsupervised Domain Adaptation for EM Image
Denoising With Invertible Networks
Shiyu Deng , Yinda Chen , Graduate Student Member, IEEE, Wei Huang ,

Ruobing Zhang, and Zhiwei Xiong , Member, IEEE

Abstract— Electron microscopy (EM) image denoising is
critical for visualization and subsequent analysis. Despite
the remarkable achievements of deep learning-based non-
blind denoising methods, their performance drops sig-
nificantly when domain shifts exist between the training
and testing data. To address this issue, unpaired blind
denoising methods have been proposed. However, these
methods heavily rely on image-to-image translation and
neglect the inherent characteristics of EM images, lim-
iting their overall denoising performance. In this paper,
we propose the first unsupervised domain adaptive EM
image denoising method, which is grounded in the obser-
vation that EM images from similar samples share common
content characteristics. Specifically, we first disentangle
the content representations and the noise components
from noisy images and establish a shared domain-agnostic
content space via domain alignment to bridge the syn-
thetic images (source domain) and the real images (target
domain). To ensure precise domain alignment, we fur-
ther incorporate domain regularization by enforcing that:
the pseudo-noisy images, reconstructed using both con-
tent representations and noise components, accurately
capture the characteristics of the noisy images from
which the noise components originate, all while main-
taining semantic consistency with the noisy images from
which the content representations originate. To guarantee
lossless representation decomposition and image recon-
struction, we introduce disentanglement-reconstruction
invertible networks. Finally, the reconstructed pseudo-noisy
images, paired with their corresponding clean counter-
parts, serve as valuable training data for the denoising
network. Extensive experiments on synthetic and real EM
datasets demonstrate the superiority of our method in
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terms of image restoration quality and downstream neuron
segmentation accuracy. Our code is publicly available at
https://github.com/sydeng99/DADn.

Index Terms— Unsupervised domain adaptation, image
denoising, electron microscopy.

I. INTRODUCTION

ELECTRON microscopy (EM) is a pivotal imaging tech-
nique in the field of biomedical image analysis. Its

remarkable imaging resolution enables the analysis of biologi-
cal structures at the nanoscale [1], [2]. However, there exists a
fundamental trade-off between image quality and acquisition
time. Acquiring high-quality EM images necessitates longer
dwell times, resulting in time-consuming processes to obtain
clean images with high signal-to-noise ratios. For instance,
Zheng et al. [1] spend approximately 16 months to acquire
a whole-brain dataset of an adult Drosophila melanogaster.
Conversely, EM images acquired in shorter dwell times tend
to exhibit noise and diminished signal-to-noise characteristics.
Therefore, there is an urgent demand for effective denoising
algorithms [3] to expedite imaging procedures to acquire clean
images with a high signal-to-noise ratio.

Traditional denoising methods [4], [5] primarily rely on
non-local and sparse representation techniques, which are
time-consuming and computationally expensive. Recently,
deep learning-based methods have played dominant roles in
image denoising. Initially, a series of supervised denoising
methods [6], [7], [8], [9], [10], [11] based on deep convolu-
tional neural networks (CNNs) have demonstrated remarkable
performance in non-blind denoising, e.g., removing additive
Gaussian white noise (AWGN). However, these methods rely
on a large amount of paired noisy-clean images for supervised
training, which is time-consuming to collect and align. Fur-
thermore, denoising models trained exclusively on synthetic
noisy images often face challenges in effectively generalizing
to real-world noisy images, mainly due to domain shifts in
noise distributions. As illustrated in Fig. 1, the denoising algo-
rithms DnCNN-G10 and DnCNN-G70 trained on noisy images
with AWGN σ of 10 and 70, respectively, cannot generalize
well (resulting in residual noise and pseudo-textures) to noisy
images with a σ of 25 due to the presence of domain shift in
the noise distributions. Instead, DnCNN-G25 trained on noisy
images with a σ of 25, without domain shift, achieves the best
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Fig. 1. Visual comparison of denoising results with/without domain shift.

denoising performance. Although self-supervised denoising
methods [12], [13], [14], [15] trained solely on noisy images
have been developed, these methods assume specific statistical
noise distributions. Unfortunately, these assumptions may not
consistently hold in practical scenarios, where real-world noise
distributions can be complex and intertwined with images,
as shown in Fig. 2. Consequently, their denoising effectiveness
in real-world cases is limited.

Theoretically, it is quite challenging to perform image
denoising based only on noisy images without the knowledge
of clean signals and accurate noise distribution. Fortunately,
although obtaining a large amount of paired data poses dif-
ficulties, we can make use of numerous real noisy images
in combination with a limited set of unpaired clean images.
This strategy significantly mitigates the cost and labor involved
in data acquisition and registration, all while enabling the
learning of noise distribution. Along this line, several unpaired
denoising methods emerge. Early unpaired denoising methods
[16], [17], [18] attempt to generate realistic noisy images
using a generative adversarial network (GAN). These gener-
ated pseudo-noisy images can be paired with corresponding
clean images to train the denoising network. Nevertheless,
the complicated nature of real noise distributions poses a
learning challenge for a simple adversarial network, leading
to limited effectiveness. Due to the success of generative
image translation methods [19], recent unpaired denoising
methods [20], [21], [22], [23], particularly in the context
of biomedical images, have adopted the idea of image-to-
image translation to address the inherent challenges. However,
it should be noted that these methods heavily rely on image
translation, a task known for its inherent complexity. Further-
more, they overlook the intrinsic characteristics of EM images
and the potential benefits of synthetic noisy images, limiting
their overall denoising performance. Hence, there exists room
for further improvement in developing robust and effective
unpaired denoising techniques.

To bridge this gap, we propose the first unsupervised domain
adaptation method for real-world EM image denoising by
using the characteristic of EM images, i.e., biomedical samples
exhibit similar textures, such as vesicles and cell membranes.
Specifically, our method initiates with domain alignment to
establish a shared domain-agnostic content space bridging
the synthetic noisy images in the source domain and the
real noisy images in the target domain. We achieve this by
disentangling content representations and noise components
from noisy images in each domain, followed by domain
adversarial training [24] between content representations of

Fig. 2. Top row: An example of common types of synthetic noisy
images (i.e., Gaussian, film, Poisson-Gaussian, speckle), a noisy image
generated as a byproduct by our proposed method, and a real-world EM
noisy image. Bottom row: the corresponding noise maps for each of the
noisy images.

both domains. To ensure precise domain alignment, we imple-
ment domain regularization by reconstructing pseudo-noisy
images using both content representations and noise compo-
nents. The reconstruction is carefully crafted to accurately
capture the characteristics of the noisy images from which the
noise components originate, all while maintaining semantic
consistency with the noisy images from which the content
representations originate. To guarantee lossless representa-
tion decomposition and image reconstruction, we introduce
disentanglement-reconstruction invertible networks. Compared
with cycle consistency constraints in previous unpaired denois-
ing algorithms, this design mitigates computational costs and
ensures unimpaired bijective transformations. Consequently,
we obtain pseudo-noisy images exhibiting a high resemblance
to real noisy images, as illustrated in Fig. 2. These generated
pseudo-noisy images, along with synthetic noisy images from
the source domain, can be paired with the corresponding
clean images, which greatly facilitates the training of our
denoising network. In this way, our method retains the benefits
of existing unpaired methods, while achieving state-of-the-art
EM denoising performance on both synthetic and real datasets.

The contributions of our work are as follows:
• We present the first method for EM image denoising from

the perspective of unsupervised domain adaptation, which
exploits the characteristics of EM images and bridges the
synthetic source and real target domains.

• We design disentanglement-reconstruction invertible net-
works for lossless representation decomposition and
high-fidelity noisy image reconstruction.

• We construct a well-aligned dataset of real-noisy paired
SEM images with varying dwell times, promoting devel-
opment and evaluation of EM denoising methods.

• We demonstrate state-of-the-art EM denoising perfor-
mance and improved neuron segmentation accuracy over
existing methods through extensive experiments.

II. RELATED WORK

A. Non-Blind Image Denoising
Non-blind denoising typically assumes prior knowledge of

the noise distribution (e.g., AWGN) or requires noisy-clean
image pairs for training deep learning networks. For instance,
DnCNN [6] is a pioneering supervised method for non-blind
image denoising, effectively removing AWGN using resid-
ual learning and batch normalization. Numerous CNN-based
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image denoising algorithms have followed DnCNN, such
as CBDNet [7], DIDN [8], RIDNet [9], RNAN [11], and
InvDN [25], which enhance denoising capabilities by intro-
ducing sophisticated network architectures. However, these
methods are highly dependent on consistent noise distribution
during training and testing, limiting their generalization to
real-world scenarios where the noise distribution is unknown
or noisy-clean image pairs are not available.

B. Blind Image Denoising

Blind image denoising methods do not require noisy-clean
paired training data, including self-/unpaired-supervised ones.

1) Self-Supervised: Self-supervised denoising methods
eliminate the need for paired noisy-clean images as train-
ing data. Noise2Noise (N2N) [12] trains on noisy image
pairs assuming independent identically distributed noise.
Noise2Void (N2V) [13] and Noise2Self (N2S) [14] intro-
duce blind-spot networks trained on a set of noisy images
without pairing. Follow-up works like Blind2Unblind [15]
and AP-BSN [26] further advance N2V. Despite avoiding
paired data, these methods rely on specific assumptions
about noise statistics, limiting their applicability. DIP [27]
explores image priors embedded in CNNs to reconstruct
the clean latent image from a single noisy observation.
However, DIP requires tedious per-image tuning of early stop-
ping. In summary, existing self-supervised techniques trade
off generalizability for removing noisy-clean data pairing
requirements.

2) Unpaired Supervised: Unpaired supervised denoising
methods provide an alternative solution by utilizing unpaired
clean and noisy images. These methods can be broadly
classified into two primary categories: noise generation-based
and image-to-image translation-based. As a pioneer of noise
generation-based unpaired denoising algorithm, Chen et al.
propose GCBD [16], which extracts plain noise patches from
noisy images and employs a GAN to learn the genera-
tion of noise. Similarly, Hong et al. [17] adopt a similar
idea, using a conditional GAN (cGAN) to generate pairs
of pseudo-noisy and clean images for training the denois-
ing network. Taking it a step further, Jang et al. [18]
introduce two branches in the noise generator—one for
signal-dependent noise and another for signal-independent
noise, respectively. Nevertheless, the complexity of real noise
distributions poses a learning challenge for a simple adver-
sarial network, leading to limited performance. On the other
hand, image-to-image translation-based unpaired denoising
approaches [20], [21], [22], [23] are inspired by CycleGAN
[19] and tackle denoising through noisy-to-clean image trans-
lation. For example, inspired by [19], Quan et al. propose
an asymmetrically cyclic adversarial network [20] to remove
artifacts from EM images. Building upon this foundation,
Lee et al. introduce self-cooperative learning [22], further
improving denoising performance. Additionally, ADN [21]
and DRGAN [23] incorporate representation disentanglement.
However, these methods heavily rely on image translation
and neglect the trait of EM images, limiting their denoising
fidelity.

C. Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) is a technique that

aims to tackle the domain shift issue, improving the perfor-
mance of a model on a label-free target domain by leveraging
knowledge from the source domain with labeled data. Within
UDA, feature-level domain adaptation methods [24], [28],
[29], [30], [31] play a crucial role. They focus on aligning
the domain distributions by adjusting the discriminative fea-
ture space. As a pioneer of feature-level UDA, DANN [24]
learns domain-invariant features, through adversarial training.
Specifically, the feature representations of the source and target
data are encouraged to be similar by minimizing domain
discrepancy. DAN [29] aims to minimize the maximum mean
discrepancy between the source and target domains in feature
space. Volpi et al. [30] use GANs to perform data augmen-
tation in the feature space and generate features conditioned
to the desired domain. Kang et al. [31] introduce a discrep-
ancy metric CCD to minimize the intra-class discrepancy
and maximize the inter-class margin. Another way to address
UDA is pixel-level domain adaptation [32], [33], [34], where
images are typically generated to contain the content of the
source domain and the style of the target domain, mainly
achieved by adversarial learning. Taigman et al. [32] propose
DTN to translate a source image to a target one under
f-consistency constraint. CoGAN [33] learns a joint distribu-
tion of multi-domain images and generates a couple of images
following different distributions. UNIT [34] introduces image-
to-image translation networks that learn a shared latent space
through GANs and variational auto-encoders. UDA algorithms
facilitate the flourishing of both high-level [35], [36], [37], [38]
and low-level [39], [40], [41] visual tasks. However, to the best
of our knowledge, few works have studied UDA for EM image
denoising. Our work contributes to filling this research gap.

III. METHOD

We aim to learn an effective denoising model for real noisy
images without paired supervision. This process is visually
depicted in Fig. 3. To achieve this goal, we utilize two distinct
sets of unpaired images: 1) We start with a set of real clean
EM images denoted as Y = {yi }i=1,...,N , which we use to
artificially generate noisy images X S

= {x S
i }i=1,...,N via noise

modeling that forms the source domain S; 2) Additionally,
we have another set consisting of real noisy EM images,
denoted as X R

= {x R
j } j=1,...,M , which forms the target

domain T . Our framework consists of three fundamental
components: 1) Domain alignment: Our initial step involves
aligning both domains to obtain a domain-agnostic content
space; 2) Domain regularization: We subsequently introduce
a domain regularization step to ensure precise domain align-
ment. This step also helps in generating pseudo-noisy images;
3) Denoising network training: Finally, we train our denoising
network using pairs of generated pseudo-noisy images and
their corresponding clean images.

A. Domain Alignment
Domain alignment is the first step of our framework to

bridge the gap between the source and the target domains. Our
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domain alignment strategy is founded on the trait that, despite
varying noise characteristics, EM images exhibit comparable
content when captured using the same imaging protocol.
We employ domain alignment to discover the shared content
space between the source and target domains.

Specifically, we disentangle each noisy image x into content
representations FC and noise components N using dedicated
networks Gs(·) and G t (·) for the source and target domains,
respectively. As illustrated in Fig. 3(a), the synthetic noisy
image x S

i can be effectively separated into its constituent
content representations FC

i and noise components N S
i , and

similarly, the real noisy image x R
j can be disentangled into

its inherent content representation FC
j and noise components

N R
j . The content representations FC

i and FC
j are expected

to be aligned with each other and be domain-agnostic.
To encourage domain-invariant content learning, we apply
adversarial training on FC

i and FC
j using a content discrim-

inator Dc. By optimizing the adversarial loss, the extracted
content representations from both domains can be aligned
to be domain-agnostic. To stabilize the adversarial training,
we adopt LSGAN [42]. We assign the domain label of the
source domain as 0 and the label of the target domain as 1.
The adversarial loss functions can be formulated as follows:

LC
G AN = Ex S

i ∼S(x)[(Dc(Gs(x S
i )) − 1)2

], (1)

LC
D = Ex S

i ∼S(x)[Dc(Gs(x S
i ))2

]

+ Ex R
j ∼T (x)[(Dc(G t (x R

j )) − 1)2
]. (2)

Considering that the input noisy images themselves provide
rough guidance for the content representations, we match
the resolutions of FC

i and FC
j by bilinear downsampling the

original noisy images to obtain content guidance (x S
i )L R and

(x R
j )L R . Hence, we also include a content guidance loss:

LC
guide = ||(x S

i )L R − FC
i ||1 + ||(x R

j )L R − FC
j ||1. (3)

The learnable common content space can be established by
ensuring that the content representations from both domains
are domain-agnostic and closely aligned, bridging the gap
between synthetic noisy images (source domain) and real noisy
images (target domain).

B. Domain Regularization
To ensure precise domain alignment and obtain paired

supervision for denoising network training, we propose
domain regularization through pseudo-noisy image reconstruc-
tion and semantic consistency enforcement.

1) Pseudo-Noisy Image Reconstruction: To obtain paired
supervision for denoising network training, we propose to
reconstruct pseudo-noisy images x̂ R

i that effectively embody
the noise pattern characteristics of the target domain. Specif-
ically, inspired by the domain adaptation methods [29] in
high-level vision tasks, we initially take advantage of the
learned content space and disentangle the noise components
N S

i and N R
j from the source and target images, respectively.

By recombining noise components N R
j with content repre-

sentations FC
i and passing through G−1

t (·), we enforce the

reconstructed pseudo-noisy image x̂ R
i to resemble the noise

distribution of the target domain, while retaining image content
from x S

i . Since x̂ R
i share the same content with x S

i and thus
yi , we can thus obtain pairs of pseudo-noisy image x̂ R

i and
clean image yi . To ensure the resemblance of reconstructed
pseudo-noisy images and real noisy images, we introduce a
target domain discriminator Dt . The adversarial loss functions
of the target domain are as follows:

LTG AN = Ex S
i ∼S(x)[(Dt (G−1

t (FC
i , N R

j )) − 1)2
], (4)

LTD = Ex S
i ∼S(x)[Dt (G−1

t (FC
i , N R

j ))2
]

+ Ex R
j ∼T (x)[(Dt (x R

j ) − 1)2
]. (5)

Symmetrically, we also apply adversarial learning to
reconstruct pseudo-noisy images that conform to the noise
distribution of the source domain. The pseudo-noisy image
x̂ S

j reconstructed with FC
j and N S

i through G−1
s (·) should

resemble the synthetic noisy images in the source domain. This
balanced design further benefits domain alignment and image
reconstruction. The adversarial loss functions of the source
domain are formulated as follows:

LSG AN = Ex R
j ∼T (x)[(Ds(G−1

s (FC
j , N S

i )) − 1)2
], (6)

LSD = Ex R
j ∼T (x)[Ds(G−1

s (FC
j , N S

i ))2
]

+ Ex S
i ∼S(x)[(Ds(x S

i ) − 12
]. (7)

2) Semantic Consistency Enforcement: Although adversarial
learning in Sec.III-B.1 effectively forces the reconstructed
pseudo-noisy images x̂ R

i and x̂ S
j to mimic the noise distri-

butions of each domain, the semantic consistency of their
contents remains uncertain. To obtain high-quality pseudo-
noisy-clean image pairs for denoising network training,
we must ensure that x̂ R

i preserves semantic information from
yi . Thus, we enforce semantic consistency on the generated
images using a pre-trained encoder E . By matching the
semantic features between x̂ R

i and yi , we can regularize x̂ R
i

to inherit image content of x S
i while mimicking target domain

noise characteristics. The semantically consistent pseudo-pairs
{x̂ R

i , yi }i=1,...,N facilitate training an effective denoising net-
work. Symmetrically, we enforce the pseudo-noisy image x̂ S

j
to preserve the image content of X R

j . Perceptual loss in natural
image restoration [43] may have a similar role, but it relies on a
VGG network [44] pre-trained on natural image classification
tasks. However, due to the domain gaps between natural and
EM images, networks pre-trained on natural images may not
effectively extract semantic information from EM images.
Although a segmentation network trained on EM images could
be an ideal feature extractor, obtaining a large number of
segmentation labels for EM data is challenging. To address this
issue, we employ self-supervised contrastive learning [45] to
train an effective feature extractor on the publicly available EM
dataset FAFB [1]. Utilizing the pre-trained encoder, we freeze
it as a semantic feature extractor. Then, we minimize a
pixel-wise feature distance on the extracted features to achieve
semantic consistency. As shown in Fig. 3 (b), the formulation
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Fig. 3. (a) Overview of our proposed framework. (b) Semantic consistency constraints through a pre-trained encoder E. (c) Specific architecture of
disentanglement-reconstruction invertible networks Gs (·)/G−1

s (·) and Gt (·)/G−1
t (·).

of semantic consistency loss can be formulated as follows:

Lsc = LSsc + LTsc

= ||E(x s
i ) − E(x̂ R

i )||1 + ||E(x R
j ) − E(x̂ S

j )||1. (8)

3) Disentanglement-Reconstruction Invertible Networks: Pre-
vious unsupervised image restoration works [21], [23], [46]
have commonly used reconstruction accuracy constraints and
cycle consistency constraints to reduce information loss during
image translation. Reconstruction accuracy constraints impose
G−1

s (FC
i , N S

i ) ≈ x S
i and G−1

t (FC
j , N R

j ) ≈ x R
j . On the other

hand, the constraint of cycle consistency requires that the
image, after undergoing two rounds of image translation,
remains close to its original versions, e.g., x S

i → x̂ S
j → x̃ S

i ≈

x S
i and x R

j → x̂ R
i → x̃ R

j ≈ x R
j . These constraints require

additional loss functions, resulting in inefficient model training
and computational costs.

To achieve lossless representation decomposition and
image reconstruction without supplementary loss functions,
we embrace recent advanced flow-based models [25], [47].
Specifically, we employ invertible neural networks (INNs)
as our disentanglement-reconstruction networks Gs(·)/G−1

s (·)

and G t (·)/G−1
t (·). Following [25], we adopt a multi-scale

architecture that consists of n downscaling modules in the
invertible networks, as shown in Fig. 3 (c). Each downscaling
module contains a Haar transformation and several invertible
blocks. As mentioned in Sec. III-A, the disentanglement
network should decouple the content representations and noise
components of a noisy image. The Haar transformation can
decompose the input image into a low-frequency component
and three high-frequency components. The primary image
content exists in the low-frequency component, while the noise
and some image content details are embedded in the high-
frequency components. After the transformation of several
invertible blocks, content and noise can be further disentan-
gled. An image with a shape of H ×W ×C can be transformed

into a feature map with a shape of H
2 ×

W
2 × 4C . We use

the first r -th channels as the content representations, and the
remaining channels of the feature map represent the noise
components. The reconstruction networks G−1

s (·) and G−1
t (·)

are reverse versions of Gs(·) and G t (·), respectively, enabling
them to transform features back into images. By adopting
invertible networks, the representation disentanglement and
image reconstruction remain naturally lossless without any
additional loss function.

C. Denoising Network Training
With pseudo-noisy-clean image pairs {x̂ R

i , yi }i=1,...,N
obtained from the aforementioned learning process, our next
target is to train an effective denoising network for real noisy
images. Due to its efficiency, we keep the same network
structure with CBDNet [7], adopting a simple U-Net [48] with
residual blocks as the denoising network G DN . We use the
L1 distance between the denoised output and the correspond-
ing clean label as the denoising loss function. We formulate
the real denoising loss function as follows:

LTdn = ||G DN (x̂ R
i ) − yi ||1. (9)

To improve the denoising performance and fully exploit
the available images, we also feed the synthetic noisy-clean
image pairs {x S

i , yi }i=1,...,N from the source domain into the
denoising network G DN . Theoretically, when the discrepancy
between the source domain and the target domain is marginal,
the abundant synthesized image pairs will substantially facil-
itate the learning process of the denoising network. The
denoising loss function for the source domain is as follows:

LSdn = ||G DN (x S
i ) − yi ||1. (10)

During the training phase, all networks are trained together
simultaneously to find the optimal solution. During the testing
phase, we only send the real noisy images to the network to
get the denoising results.
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D. Loss Function

With the aforementioned losses, the invertible networks
Gs(·)/G−1

s (·) and G t (·)/G−1
t (·) and the denoising network

G DN can be trained with the following formulation:

L = λTdnL
T
dn + λSdnL

S
dn + λscLsc

+ λSG ANL
S
G AN + λTG ANL

T
G AN

+ λC
G ANL

C
G AN + λC

guideL
C
guide, (11)

where λTdn , λSdn , λsc, λSG AN , λTG AN , λC
G AN , and λC

guide are
loss weights. Loss functions of discriminators Dc, Dt , Ds are
formulated in Eq.2, Eq.5, and Eq.7, respectively.

IV. IMPLEMENTATION

A. Data Preparation

To evaluate our method, we prepare both synthetic and real
noisy EM datasets. The synthetic dataset derives from the
CREMI dataset [2], originally proposed for neuron segmenta-
tion in the adult Drosophila brain. This dataset contains three
subsets, each with 125 training and 125 test images. Each
image has a resolution of 1250×1250. To simultaneously eval-
uate the denoising performance and its impact on segmentation
accuracy, we swap the training and test data. Our goal is to
create synthetic noisy images that closely conform to real EM
noise distribution. We employ three noise models: film noise,
the mixture of Gaussian and Poisson noise, and Speckle noise,
applying them to subsets A, B, and C, respectively. These
models better mimic real noise than AWGN, as demonstrated
in Fig. 2. Specifically, for film noise, we set the kernel size
to 5 and the maximum intensity to 1. For the Poisson-Gaussian
noise, we randomly set the noise level σ for the Gaussian
noise between 55 and 85 and the scale for the Poisson noise
as a random number between 0.6 and 0.8. For speckle noise,
we set its mean at 0.2 and its variance at 0.09. As for unpaired
learning methods, we use the first 60 images from each 125-
image training set to synthesize noisy images, reserving the
rest as unpaired clean images.

In addition, due to the lack of publicly available real
noisy-clean EM image pairs, we employ an imaging strategy
to obtain some noisy-clean image pairs. Specifically, we use
MultiSEM [49] to image the same sample with different dwell
times. We use images obtained with a dwell time of 0.05µs
as the noisy images and images obtained with a dwell time
of 3.2µs as the clean images. Since they are imaged from the
same sample, the clean and noisy images share consistent con-
tent. To achieve pixel-wise alignment of image pairs, we apply
elastic registration [50] to register the clean and noisy images
of the same sample. In addition, we apply intensity inversion
and CLAHE (contrast limited adaptive histogram equalization)
to enhance the image contrast as image pre-processing. Finally,
we obtain a well-aligned dataset (RETINA) of noisy-clean
SEM image pairs from mouse retinas. This dataset has the
same resolution of 4nm as CREMI. For a convenient evalu-
ation of our denoising algorithm, we divide this dataset into
three parts: training, validation, and testing sets, consisting of
1374, 100, and 400 noisy-clean image pairs, respectively, each

with a resolution of 512×512. We also include 1374 unpaired
images in the training set to implement our unpaired learning.

B. Training Details
Our framework is consist of five trainable networks:

Gs, G t , Dc, Ds , and Dt . The whole framework is trained
jointly in an end-to-end manner. We adopt the Adam optimizer
with β1 = 0.9, β2 = 0.999 to train the networks with a learn-
ing rate of 0.0001, and fix it during the training phase. Prior
to network input, we crop them into 192 × 192 patches and
perform rotation and flip for data augmentation. The training
is performed with a batch size of 2 on two NVIDIA Titan XP
GPUs. Each mini-batch contains randomly selected patches
from unpaired clean and noisy images. All experiments are
conduct by PyTorch framework. As for the invertible networks,
we leverage the general coupling layer proposed in [51] and
densely connected convolutional blocks proposed in ESRGAN
[52]. We synthesize noisy images to form the source domain
using AWGN with a noise level of 55. The loss weights are
kept as: λTdn = 1, λSdn = 1, λsc = 0.05, λSG AN = 0.2,
λTG AN = 0.2, λC

G AN = 0.1, and λC
guide = 0.1.

V. EXPERIMENTAL RESULTS

A. Compared Methods
To thoroughly assess our proposed method, we conduct a

comprehensive comparison with a range of advanced denois-
ing techniques, categorized into six classes:

1) Non-learning based: This category includes two classical
image denoising algorithms, BM3D [4] and WNNM [5].

2) Supervised† (Real noise): In this ideal case, supervised
networks are trained on real noisy-clean image pairs,
and the training data match the test data distribution.
The denoising results obtained through these methods
can be considered as an upper bound.

3) Supervised (Board noise): Networks are trained on a
broad range of simulated noisy images paired with their
corresponding clean labels, and testing is performed on
real noisy images. We simulate noisy training images by
adding AWGN with a random σ between 10 and 85.

4) Supervised (Specific noise): Networks are trained on
synthetic image pairs, and the simulated noise follows
a specific distribution. We simulate the training noisy
images by adding AWGN with σ = 55.

5) Self-supervised: These methods are trained only on
noisy images. We include four exceptional self-
supervised methods: DIP [27], ZSn2n [53], N2V [13],
and B2U [15].

6) Unpaired supervised: These methods are trained on
unpaired clean and noisy images, which is also our
setting. We include CycleGAN [19] and four state-of-
the-art unpaired denoising methods: ISCL [22], ADN
[21], C2N [18], and DRGAN [23].

All methods except “Supervised† (Real noise)” are trained
without the knowledge of noise distribution of testing data. For
each class of supervised training, we apply four popular net-
works: DnCNN [6], CBDNet [7], DIDN [8], and RIDNet [9].
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TABLE I
QUANTITATIVE RESULTS OF IMAGE DENOISING ON SYNTHETIC TEST IMAGES FROM THE CREMI DATASET [2], IN TERMS OF IMAGE RESTORATION

FIDELITY (PSNR / SSIM) AND NEURON SEGMENTATION ACCURACY (VOI / ARAND).
NOTE THAT † STANDS FOR IDEAL SUPERVISION WHICH IS NOT ALWAYS AVAILABLE IN REAL CASES

Fig. 4. Visual comparison (denoising results and error maps) on synthetic test data.

B. Results on Synthetic Data

The denoising performance is evaluated using the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM)
between denoised images and their corresponding groundtruth.
As shown in Table I, our method outperforms all methods
except the denoising networks trained with ideal supervision,
i.e., “Supervised† (Real Noise)”, reaching a performance close
to it. Self-supervised methods perform poorly due to the lack
of knowledge about the distribution of clean images. Super-
vised methods trained with inconsistent noise distributions,
i.e., “Supervised (Simu. B. noise)” and “Supervised (Simu. S.

noise)” struggle to obtain pleasing results due to domain
shift issues. “Supervised (Simu. B. noise)” performs slightly
better, possibly attributed to training on a wider range of
noise distributions. On the contrary, unpaired methods exhibit
more potential, especially in CREMI-C subsets with significant
domain shifts, where only they perform well. Our approach
consistently outperforms other unpaired methods with over
1dB improvement in PSNR, showing its superiority.

Fig. 4 presents denoising visual results on the CREMI-C
subset. The top two rows display the denoised images, while
the bottom two rows show the error maps, reflecting the
differences between the denoising results and the groundtruth.
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Fig. 5. Exemplar segmentation results on the denoising results of a synthetic noisy image. Each pseudo color represents one neuron.

TABLE II
QUANTITATIVE DENOISING RESULTS (PSNR / SSIM) ON REAL

IMAGES FROM THE RETINA DATASET

It can be observed that BM3D, RIDNet-B, DIP, and N2V
produce over-smoothed denoising results. The error maps
show that these methods do not completely remove noise,
leaving a considerable amount of noise artifacts. ISCL, C2N,
and DRGAN achieve relatively decent denoising results, but
some residual noise remains. On the contrary, our approach
effectively removes noise while preserving the texture and
details of the image, resulting in visual results closest to
the groundtruth. Fig. 5 shows the impact of image denoising
results from different methods on the downstream neuron
segmentation. We utilize the same pre-trained neuron segmen-

TABLE III
QUANTITATIVE RESULTS (PSNR / SSIM) OF GENERALIZATION

ANALYSIS ON CREMI DATASET

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT SOURCE NOISE MODELING

STRATEGY ON THE RETINA DATASET

tation model [54] in the clean CREMI dataset for evaluation.
It is evident that when noise removal is inadequate, segmenta-
tion split errors occur. Our method provides the most effective
denoising results and achieves the highest accuracy in neuron
segmentation, consistent with the variation of information
(VOI) and the adapted rand error (ARAND) result in Table I.

C. Results on Real Data
As shown in Table II, our method outperforms other blind

denoising methods. Existing self-supervised denoising meth-
ods and supervised models trained on synthetic noisy data
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perform even worse than traditional denoising methods like
BM3D and WNNM when faced with complex real-world
noise. Unpaired supervised methods generally achieve decent
performance on both the validation and test sets but still
exhibit some residual noise in the visual denoising results,
as shown in Fig. 6. In contrast, our method excels in denois-
ing performance. Compared with other unpaired denoising
algorithms, our method improves the performance by more
than 1dB. Notably, our method approaches the performance
of supervised models trained on real noisy-clean image pairs
in terms of the SSIM metric. As shown in Fig. 6, WNNM,
RIDNet-B, DIP, B2U, and ISCL retain noticeable noise,
especially structural noise related to image content. C2N
and DRGAN exhibit relatively promising results. Our method
achieves the most visually pleasing results and is closest to
clean images.

The denoising results shown in Table II and Fig. 6 also
validate the potential of our method in eliminating inherent
noise. Generally, the inherent noise in EM images can be clas-
sified into several types, including electronic noise, shot noise,
and environmental noise. These noises are typically associated
with the properties of the electron beam, the characteristics of
the sample itself, and the imaging environment. Due to the
complexity and variability of imaging processes, image noise
generated by different imaging devices on various biologi-
cal tissues in different environments may exhibit completely
different distributions. In order to make denoising method
more universally applicable, our algorithm does not explicitly
analyze the characteristics of these noises. Instead, it analyzes
the commonalities in the potential biological structures of
noisy images, implicitly learning the distribution of noise to
aid in training the denoising network. Compared to extracting
commonalities from complex and diverse noise, we believe
that the similarity of biological structures is more significant.

D. Analysis and Discussion
1) Significance of EM Image Denoising: Although there are

now some large-scale EM image datasets, such as FAFB and
FIB-25, these datasets still require several image processing
steps [55], [56], [57], [58] to enhance image quality and
clarity from data acquisition to application. Additionally, it is
always necessary to obtain different biological sample tissues
at different resolutions to analyze the structures of different
organisms and explore their functions. Therefore, existing
EM image datasets cannot fully meet the needs of biological
research, and existing electron microscopy imaging techniques
still face a trade-off between imaging speed and imaging
quality. Therefore, it remains meaningful to explore image
processing algorithms to mitigate this trade-off.

2) Generalization Analysis: We evaluate our method’s gen-
eralization performance when training with unpaired noisy
images and clean images from different brain regions. The
results are presented in Table III. For unpaired methods, the
first column in the table represents the clean image dataset
used for training, and the first row represents the noisy image
dataset used for training and testing. In the case of the
supervised learning method RIDNet, the first column and first
row represent the training and testing datasets, respectively.

The results in the table demonstrate the superior generalization
ability of our method compared to other unpaired denoising
methods. Notably, when there is a distribution difference
between the training and testing datasets, our method signifi-
cantly outperforms the supervised method, i.e., RIDNet.

3) Noise Modeling for Synthetic Data: We also explore how
different noise modeling strategies for synthetic noisy images
(source domain) impact the denoising performance on real
noisy images (target domain). As depicted in Table IV,
we compare the effects of additive white Gaussian noise
(AWGN), film noise, Poisson-Gaussian noise, and Speckle
noise. It can be seen that when Poisson-Gaussian noise is
added to the synthetic source images, the denoising model per-
forms the best on real noisy images, reaching a PSNR/SSIM
of 23.7193dB/0.5447 on the validation set. This notable
improvement can be attributed to that the distribution of
Poisson-Gaussian noise is closer to the real noise distribution
in the RETINA dataset. By making full use of the valuable
source domain data, our approach attains impressive denoising
results.

4) Generated Pseudo-Noisy Images: As a byproduct of the
unpaired denoising algorithms, we also compare the noise
images generated by each method, which should resemble real
noisy images. Fig. 7 illustrates the noisy images generated
by different algorithms and their enlarged versions. The top
two rows depict the noise images generated by each method.
CycleGAN and C2N generate noise distributions that are too
uniform and do not accurately reflect real noise distributions.
ISCL, DRGAN, and ADN produce noisy images that relatively
better resemble real noise patterns, but the generated noisy
images of DRGAN still lack correlation with the underly-
ing image signal. ISCL and ADN tend to underestimate or
overestimate noise levels, respectively. On the contrary, our
method generates noisy images that closely resemble real noise
distributions, attributed to our domain adaptation strategy.

5) Distribution Analysis: We use t-SNE visualization to
analyze the effectiveness of our domain alignment strategy.
Fig. 8(a) shows that intermediate representations of the source
and target domains obtained through disentanglement net-
works Gs(·) and G t (·) can be clustered into three groups.
Content representations from both domains, i.e., FC

i and FC
j

are well-clustered together, while noise components (N R
j and

N S
i ) are separated into two distinct clusters. In Fig. 8(b), the

predicted real noise map x̂ R
i − yi generated by our method

closely resembles the distribution of real noise maps, and the
predicted synthetic noise map x̂ S

j − yTj is close to the synthetic
noise distribution in the source domain.

6) Amount of Clean Training Data: In practice, obtaining
clean images is much more time-consuming than acquiring
noisy images. To evaluate the robustness of denoising methods,
we also analyze the impact of reducing the number of clean
training images on the performance of each method. As shown
in Fig. 9, C2N and ADN show significant performance drops.
RIDNet-R† (ideal case) exhibits notable degradation with only
1% clean training images. On the contrary, our method still has
relatively stable performance, outperforming RIDNet-R† in
SSIM with only 1% clean images, highlighting its practicality.
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Fig. 6. Visual comparison (denoising results and error maps) on real test data.

Fig. 7. Visual comparison (generated pseudo-noisy images and the
corresponding noise maps) of unpaired denoising methods.

Fig. 8. t-SNE visualization of the distribution of (a) intermediate
representations and (b) noise maps.

Fig. 9. Quantitative results on real dataset with fewer clean images.

7) Denoising Performance on Noisy Images With Varying
Resolution: To further demonstrate the potential of the
proposed algorithm for denoising low-resolution images,

Fig. 10. Visual comparison of denoising results on LR noisy images.

TABLE V
QUANTITATIVE COMPARISON OF DENOISING RESULTS ON NOISY

IMAGES WITH VARYING RESOLUTIONS

TABLE VI
QUANTITATIVE COMPARISON OF SEGMENTATION RESULTS ON

DENOISED IMAGES AT DIFFERENT RESOLUTIONS

we conduct experiments on noisy images at different reso-
lutions. Specifically, we first downscaled the original clean
CREMI-B images using bicubic operator and then added noise
to simulate low-resolution noisy images in practical elec-
tron microscopy imaging. Subsequently, we applied different
denoising algorithms to these low-resolution noisy images.
To obtain high-resolution images, we uniformly upsampled
these denoised results using bicubic interpolation, thereby
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TABLE VII
QUANTITATIVE COMPARISON OF DENOISING RESULTS (PSNR / SSIM)
WITH DIFFERENT DOWNSAMPLING ALGORITHMS AND DOWNSAMPLING

FACTORS IN THE CONTENT GUIDANCE LOSS

TABLE VIII
QUANTITATIVE RESULTS OF DIFFERENT LOSS WEIGHTS ON RETINA

TESTSET (λT
dn = 1, λS

dn = 1, λsc = 0.05)

obtaining clean high-resolution images. Throughout this pro-
cess, both the clarity and resolution of the images can
be improved. Table V demonstrates the denoising results
of different denoising algorithms on images with varying
resolutions (downsampled by 2 times and 4 times). “LR”
represents the results before bicubic interpolation, while “HR”
represents the results after bicubic interpolation. It can be
observed that our method consistently achieves the optimal
performance, showcasing the advantages of our algorithm
in enhancing image signal-to-noise ratio and resolution. In
Fig. 10, we present a visual comparison of the denoising
results obtained by different denoising algorithms on low-
resolution (×2) noisy images. To facilitate comparison, both
the noisy and denoised images have been upsampled to their
original resolution. As shown in the figure, the fine details
of biological structures in the low-resolution noisy images
are submerged by noise, resulting in a significant degradation
of image quality. Although ISCL and C2N exhibit some
improvement in image quality, the reconstruction of details
remains imperfect. Conversely, our method notably enhances
image quality, preserving the integrity of restored image details
to a greater extent. After being processed by our algorithm,
as shown in “Ours”, numerous biological structures in the
image are restored and reconstructed. These subtle structures
are unknown to denoising algorithms. This example demon-
strates that our algorithm has the potential to recover unknown
biological structures. To further illustrate the superiority of
our denoising algorithm over others at different resolutions,
we validated different algorithms on downstream tasks like
neuron segmentation. As shown in Table VI, the restoration
outcomes of our algorithm consistently outperform others in
neuronal segmentation tasks, confirming the accuracy and
effectiveness of our method in detail reconstruction compared
to other methods.

8) Design of Content Guidance Loss: We employ content
guidance loss in domain alignment learning to guide the

TABLE IX
QUANTITATIVE COMPARISON OF RESULTS WITH/WITHOUT A

PRE-TRAINED ENCODER ON THE CREMI DATASET

TABLE X
PARAMETER COUNT AND COMPUTATIONAL COST COMPARISON OF

DENOISING ALGORITHMS

representation disentanglement. During the disentanglement
phase, we utilize downsampling to ensure that the information
of the disentangled content representations and noise compo-
nents matches that of the input noisy image. If downsampling
is not employed, the cumulative information of the content
representations and the noise components would exceed that of
the input image, potentially introducing irrelevant details. The
imperfect representation disentanglement would lead to the
generation of pseudo-noisy images that incorporate irrelevant
information, thereby increasing the difficulty of denoising
learning. To facilitate disentanglement learning, we intro-
duce content guidance loss to guide the learning of content
representations. The content guidance loss is performed on
downscaled noisy images and content representations. As for
the implementation of content guidance loss, nearest, bilinear,
bicubic, and lanczos are all classic downsampling algorithms.
In favor of the low computational cost, we choose the bilinear
downsampling. We evaluate the impact of various downsam-
pling algorithms and downsampling scales, presenting the
results on RETINA validation set in Table VII.

9) Impact of Loss Weights: We evaluate how different loss
weights affect denoising performance on the RETINA test set.
The corresponding results are detailed in Table VIII. In our
initial experiments, we standardize all loss weights except
λsc to 1. To ensure the comparability of λsc with other loss
terms, we set λsc to 0.05 and achieve results surpassing all
baseline methods (refer to the second row of Table VIII).
Subsequently, recognizing the auxiliary role of the content
guidance loss in content representation learning, we reduced
λC

guide to 0.1, resulting in a modest performance improvement
(refer to the third row of Table VIII). Moreover, to mitigate
training instability potentially caused by excessive GAN loss,
we decreased the associated weights to 0.2, significantly
improving denoising performances (refer to the fourth row of
Table VIII). Finally, aiming to alleviate constraints on domain
alignment, we set λC

G AN to 0.1, yielding the optimal results
(refer to the fifth row of Table VIII).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 18,2025 at 16:21:49 UTC from IEEE Xplore.  Restrictions apply. 



DENG et al.: UNSUPERVISED DOMAIN ADAPTATION FOR EM IMAGE DENOISING WITH INVERTIBLE NETWORKS 103

10) Analysis of Pre-Trained Encoder: In Sec.III-B.2,
we introduce the pre-trained encoder for semantic consistency
enforcement. To further analyze the effectiveness of the
pre-trained encoder, we investigate the influence of domain
gaps between the testing noisy dataset and the training
dataset of the pre-trained encoder. The FAFB dataset used
for pretraining the semantic encoder and the source synthetic
denoising dataset CREMI are both derived from the fruit
fly brain, exhibiting certain similarities in distribution.
However, the real denoising dataset RETINA, originating
from the mouse retina, differs somewhat in distribution
from the FAFB dataset. To further illustrate the effectiveness
of the pre-trained encoder on noisy datasets with different
data distribution variances, we conduct experiments on
the CREMI and RETINA datasets, with the results shown
in Table IX and Table XI. When comparing the results,
it becomes clear that a pre-trained encoder consistently
improves denoising performance across datasets with varying
degrees of data distribution differences, such as RETINA
and CREMI. Moreover, the performance improvement
observed with the pre-trained encoder on the RETINA dataset
remains notable when compared to that on the CREMI
dataset, despite the disparities in data distribution. As shown
in Table XI, the results of the validation set using the
pre-trained encoder (“Ours”: 23.5206/0.5442) are superior
to those without using the pre-trained encoder (“Ours w/o
Lsc”: 23.2767/0.5251). Adding the semantic consistency loss
provided by the pre-trained encoder still improves denoising
performance, demonstrating the generalizability of the
pre-trained encoder model. This could be attributed to the fact
that the FAFB dataset and the RETINA dataset exhibit some
biological semantic consistency, as both datasets extensively
contain structures like cell membranes and vesicles. This
implies that a pre-trained encoder on datasets with slightly
different distributions can still effectively extract semantic
information and contribute to the training of denoising
networks. In practical applications, even if it is not possible to
obtain datasets with completely consistent distributions, other
publicly available datasets can be used to train the encoder.
Currently, in the field of biomedical imaging, there are
many publicly available datasets from electron microscopy,
light microscopy, CT, MRI, etc. Thanks to these existing
public datasets, the pre-trained encoder will further enhance
algorithm performance.

11) Parameter Count and Computational Cost: We conduct
a comparison of parameter count and computational cost
with other unsupervised denoising algorithms. As shown in
Table X, our denoising algorithm has the smallest parame-
ter count and computational complexity among unsupervised
denoising algorithms. This is attributed to our elaborate net-
work design, which enhances denoising performance without
introducing additional computational overhead.

E. Ablation Study
1) Effectiveness of Each Component: In Table XI, we val-

idate the effectiveness of each component of our method.
Specifically, without domain adaptation strategy (Ours w/o

TABLE XI
ABLATION RESULTS (PSNR / SSIM) ON RETINA DATASET

TABLE XII
QUANTITATIVE COMPARISON OF RESULTS WITH/WITHOUT USING

INVERTIBLE NETWORKS ON THE RETINA DATASET

DA) and instead utilizing feature disentanglement to achieve
noise-to-clean image translation with invertible networks leads
to a significant performance drop (about 1dB in PSNR),
confirming the effectiveness of our domain adaptation learn-
ing strategy. Furthermore, when the semantic consistency
constraint is removed (Ours w/o Lsc) or the domain align-
ment constraint is lacking (Ours w/o LC

G AN ), there is also a
considerable performance drop. Additionally, if the domain
regularization constraint from the source domain is missing
(Ours w/o LSG AN ) or the constraint on denoising the syn-
thetic noisy images is not applied (Ours w/o LSdn), the best
denoising performance cannot be achieved. The performance
gap between “Ours w/o LSdn” and “Ours” is relatively small,
indicating that our framework effectively learns target domain
information. Therefore, utilizing the target domain denoising
loss LTdn alone can achieve good denoising performance. How-
ever, as mentioned in Sec. III-C, when the differences between
the source and target domains are small, incorporating LSdn can
further improve denoising performance, as it augments the data
during the training of the denoising network. These results
highlight the importance and utility of each loss function in
our approach.

2) Necessities of INNs: We incorporate a performance com-
parison with the conventional CNN employed as the backbone
network for disentanglement-reconstruction. To ensure fairness
in comparison, we maintained consistency in the training
strategy. As indicated by Table XII, the results of “Ours w/
INN” outperform those of “Ours w/ CNN”. This is attributed to
the superior ability of INN to preserve information throughout
the image disentanglement and reconstruction process, con-
sequently producing high-quality pseudo-noisy images. This,
in turn, provides better training data for the denoising network,
ultimately leading to improved denoising performance.

3) Specific Hyperparameters of INNs: We analyze the hyper-
parameters’ impact in Gs(·) and G t (·). As shown in Fig. 11,
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Fig. 11. Ablation results of hyperparameters of Gs( · )/Gt( · ).

the best performance is achieved when the invertible networks
Gs(·) and G t (·) include two downscaling modules (n = 2)
and use the first channel of the intermediate representations
(r = 1) to represent the content representations.

VI. FUTURE WORK

In this section, we discuss potential research avenues in
EM image denoising. These directions aim to refine existing
electron microscopy techniques and improve imaging quality.
We summarize the following three key areas:

• Joint task of denoising and super-resolution: In most
existing EM image restoration works, only a single type
of image degradation (such as noise or low resolution) is
addressed. Future work should integrate denoising and
super-resolution techniques to address noise and low
resolution simultaneously, reflecting real-world imaging
conditions.

• Utilizing information from 3D EM image sequences: Our
current approach focuses on individual noisy images,
which ignores adjacent images. In future work, it is
possible to leverage the multi-frame information of 3D
EM image sequences for denoising. This will result in
improved axial continuity and consistency in denoised
images.

• Discriminating between biological fine structures and
noise: Due to the nanometer-level resolution of existing
electron microscopy imaging, noise and small biologi-
cal structures have certain similarities, which poses a
challenge for denoising tasks. In future work, it may be
beneficial to utilize prior knowledge of fine biological
structures to accurately remove noise while preserving
the biological structure in the images.

These future research directions aim to push the boundaries
of EM image restoration and contribute to advancements in
biological imaging.

VII. CONCLUSION

In this paper, we present a novel unpaired EM image
denoising method from the perspective of domain adaptation.
Inspired by the observation that biomedical EM images share
content characteristics, our method begins with establishing
a domain-agnostic content space between synthetic and real
noisy images through domain alignment learning. We further
introduce domain regularization to ensure precise domain
alignment and generate pseudo-noisy images that conform to
the real noise distribution, obtaining image pairs for denoising

network training. To achieve lossless representation disen-
tanglement and image reconstruction, we adopt invertible
networks in our framework. Extensive experiments on syn-
thetic and real datasets demonstrate the superiority of our
method over existing methods quantitatively and qualitatively.
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